Validation of gamma scanning method for optimizing NaI(Tl) detector model in Monte Carlo simulation
Huynh Dinh ChuongNguyen Quoc Hung,Nguyen Thi My Le, Vo Hoang Nguyen, Tran Thien Thanh
Abtract:
The aim of this study is the validation of gamma scanning method for optimizing NaI(Tl) detector model in Monte Carlo simulation. The experimental procedure involved: scanning on front and lateral surfaces of the detector with collimated low-energy photon beam; calibrating the efficiency with energies between 31-1408 keV for point sources at distances of 0 cm and 30 cm from source to the detector. The Monte Carlo code used for the simulations was MCNP6. The diameter and the length of crystal were determined according to the measured results of gamma scanning with a collimated 241Am radioactive source. The distance from window to crystal was estimated using transmission measurement recorded on a second detector. The density of reflector was adjusted to obtain the match between measured and simulated values of efficiency ratio of 81 and 31 keV from a 133Ba radioactive source. The optimized model was applied in Monte Carlo simulations to determine the efficiency and energy spectrum response function of NaI(Tl) detector for point source measurements in two configurations. Good agreement was obtained between measured and simulated results.
More detail >>
Natural radioactivity and radon emanation coefficient in the soil of Ninh Son region, Vietnam
Development of apparatus for mean-lifetime measurement of cosmic-ray muons using plastic scintillation detectors and FLASH-ADC/FPGA-based readout electronics
Vo Hong Hai, Nguyen Tri Toan Phuc
Introduction: This paper presents the development and results of an apparatus for measuring the mean lifetime of cosmic-ray muons.
Methods: The apparatus uses three plastic scintillation detectors and a readout electronics system based on Flash Analog Digital Converter (Flash-ADC) and Embedded Field Programmable Gate Array (FPGA). The readout system has 8-bit resolution and a 125 Msample/sec sampling rate. The system's trigger and data collection are controlled through a computer interface based on LabVIEWTM. The readout electronics are calibrated with an accuracy of 8 nsec/TDC channel.
Results: Over 6000 events were recorded during the measurements performed at ground level using aluminum as the muon stopping material, and the muon decay time spectrum was obtained and fit with a combination of two exponential components and a constant background. The mean lifetimes of negative and positive muons were determined.
Conclusion: Our results indicate that the mean lifetimes of negative and positive muons in aluminum are 0.70 ± 0.24 µsec and 2.05 ± 0.16 µsec, respectively.
More detail>>