FACULTY OF PHYSICS & ENGINEERING PHYSICS

DEPARTMENT OF NUCLEAR PHYSICS - NUCLEAR ENGINEERING - MEDICAL PHYSICS

 Validation of gamma scanning method for optimizing NaI(Tl) detector model in Monte Carlo simulation

Huynh Dinh Chuong, Nguyen Quoc Hung, Nguyen Thi My Le,  Vo Hoang Nguyen, Tran Thien Thanh

Abtract:

The aim of this study is the validation of gamma scanning method for optimizing NaI(Tl) detector model in Monte Carlo simulation. The experimental procedure involved: scanning on front and lateral surfaces of the detector with collimated low-energy photon beam; calibrating the efficiency with energies between 31-1408 keV for point sources at distances of 0 cm and 30 cm from source to the detector. The Monte Carlo code used for the simulations was MCNP6. The diameter and the length of crystal were determined according to the measured results of gamma scanning with a collimated 241Am radioactive source. The distance from window to crystal was estimated using transmission measurement recorded on a second detector. The density of reflector was adjusted to obtain the match between measured and simulated values of efficiency ratio of 81 and 31 keV from a 133Ba radioactive source. The optimized model was applied in Monte Carlo simulations to determine the efficiency and energy spectrum response function of NaI(Tl) detector for point source measurements in two configurations. Good agreement was obtained between measured and simulated results.

 

More detail >>

 Natural radioactivity and radon emanation coefficient in the soil of Ninh Son region, Vietnam

Huynh Nguyen Phong Thu,  Nguyen VanThang, Truong Thi Hong Loan, Nguyen Van Dong,  Le Cong Hao

Abstract

The natural radioactivity (238U, 226Ra, 232Th and 40K) and radon emanation coefficient for 57 soil samples belonging to alluvial, red, forest surface, slip-debris, metamorphic and sandy soil of the Ninh Son region in Ninh Thuan province have been determined. The soil gas radon was measured by in-situ with RAD7 radon monitor coupled with a soil gas probe while activity concentrations of 238U, 226Ra, 232Th, and 40K were measured by an HPGe gamma-ray spectrometry system. The 226Ra/238U disequilibrium occurred in the soil samples and a great majority of the 226Ra/238U values lie above 1. Average activity concentrations of 226Ra, 232Th, and 40K are significantly higher than the worldwide average concentrations in soils published by UNSCEAR, 2008. The gamma dose rate ranged from 55 ± 2 to 248 ± 7 nGy h−1 with an average of 130 ± 4 nGy h−1 which is greater than the world value. Strong positive correlations were recorded between 238U and 226Ra, 232Th and 226Ra, 232Th and 238U, and 226Ra and 222Rn. The results of weathering and alteration processes were proposed to be dominated reasons for the 226Ra/238U disequilibrium occurred in the soil samples. Most of the radon in soil gas samples are considered “normal risk” or low radon index. The mean values of the emanation coefficient for alluvial, red, forest surface, slip-debris, metamorphic and sandy soil were found to be 0.51 ± 0.03, 0.40 ± 0.02, 0.36 ± 0.02, 0.30 ± 0.02, 0.26 ± 0.02 and 0.15 ± 0.01, respectively. Radon emanation was found to be an inverse function of grain size for grain sizes larger than 0.1 mm in diameter and independent on the radium content of the soil sample.

 

More detail >>

 

Development of apparatus for mean-lifetime measurement of cosmic-ray muons using plastic scintillation detectors and FLASH-ADC/FPGA-based readout electronics

Vo Hong Hai, Nguyen Tri Toan Phuc

Science & Technology Development Journal, 26(1):1-7
Abstract:

Introduction: This paper presents the development and results of an apparatus for measuring the mean lifetime of cosmic-ray muons.

Methods: The apparatus uses three plastic scintillation detectors and a readout electronics system based on Flash Analog Digital Converter (Flash-ADC) and Embedded Field Programmable Gate Array (FPGA). The readout system has 8-bit resolution and a 125 Msample/sec sampling rate. The system's trigger and data collection are controlled through a computer interface based on LabVIEWTM. The readout electronics are calibrated with an accuracy of 8 nsec/TDC channel.

Results: Over 6000 events were recorded during the measurements performed at ground level using aluminum as the muon stopping material, and the muon decay time spectrum was obtained and fit with a combination of two exponential components and a constant background. The mean lifetimes of negative and positive muons were determined.

Conclusion: Our results indicate that the mean lifetimes of negative and positive muons in aluminum are 0.70 ± 0.24 µsec and 2.05 ± 0.16 µsec, respectively.

More detail>>

FaLang translation system by Faboba

Links

 


   logo Truong KHTN 2021  physics          TTHN          VAEA     varans1          nri logo           canti1