FACULTY OF PHYSICS & ENGINEERING PHYSICS

DEPARTMENT OF NUCLEAR PHYSICS - NUCLEAR ENGINEERING - MEDICAL PHYSICS

Zenith angle dependence on cosmic-ray background in HPGe gamma spectrometers by using GEANT4 simulation

Hai Vo Hong, Hung Nguyen Quoc, Phuc Nguyen Tri Toan, Loan Truong Thi Hong, Masaharu Nomachi

Applied Radiation and Isotopes 211 (2024) 111418

Abstract:

In this study, we investigate the impact of zenith angle variations on cosmic-ray induced background in High-Purity Germanium (HPGe) gamma spectrometers using a coincidence technique based on plastic scintillator-Germanium detectors. We utilize an HPGe detector (Model GC2018 Mirion Ge Detector) enclosed within a lowactivity cylindrical lead shield (Model 747E Mirion Lead Shield). For cosmic ray detection, a coincidence detection system with plastic scintillator detectors was positioned on top of the lead shielding. The zenith angle at the Germanium detector is computed using the dimensions of the square plastic scintillator and its distance from the Germanium detector center. We carried out measurements of cosmic-ray induced background in an HPGe gamma spectrometer with a square plastic configuration (80cm x 80cm), equivalent to a 45◦ zenith angle. The experimental measurements were compared with GEANT4 simulation data. The results demonstrate a good agreement between the measured energy spectrum and the simulated data across the energy range of 0.05 to 47 MeV. Further investigations into the effects of varying zenith angles provide valuable insights for optimizing HPGe spectrometer setups with minimized background interference.

More detail >>

Vu Ngoc Ba,  Le Thi Ha Giang, Bui Ngoc Thien, Truong Thi Hong Loan, Ngo Quang Huy

Applied Radiation and Isotopes 163 (2020) 109229

Abstract:

In this work, the physical dimensions and the actual position of germanium crystal within a detector housing, the homogeneity of the crystal surface and outer dead layer thickness for a p-type HPGe detector were con rmed by the scan method using the collimated low energy photon beams combined with Monte Carlo simulation. The length and the diameter of the crystal were found to match with the values supplied by the manufacturer in discrepancy of about 3%. Only one mounting strap (Typical) for holding the crystal inside the mounting cup instead of two which is indicated in the detector drawing supplied by manufacturer was revealed by scanning along the lateral face of detector. Scanning on the front surface and around the lateral face of detector by the collimated 59.5 keV photon beam veri ed the outer dead layer thicknesses at the front surface and lateral face of the crystal averagely increases about 6.5% and 12% respectively. Adjusting the detector parameters for MCNP simulation by these veri ed values, the simulated peak ef ciencies for different photon energies become being in accordance with the experimental peak ef ciencies.

More detail >>

Uranium isotopes in groundwater in Ho Chi Minh City and related issues:

Health risks, environmental effects, and mitigation methods

Nguyen Van Thang, Huynh Nguyen Phong Thu, Le Cong Hao

Journal of Contaminant Hydrology 245 (2022) 103941

Abstract:

Groundwater is regularly used for many purposes, such as drinking and agricultural irrigation systems. Still, it contains high levels of radionuclides (e.g., 238U, 232Th, and 226Ra) that are potentially hazardous to humans and the environment. In this study, activity concentrations of uranium isotopes were analyzed in 15 groundwater samples taken from 15 bored wells in Thu Duc district, Ho Chi Minh City, Vietnam. Environmental effects of the irrigation system with groundwater on agricultural soil in the study area were assessed by models. It was found that the activity concentrations of 238U and 234U in groundwater samples were in the ranges of (13.5–268.7) mBq l− 1 and (20.2–438.3) mBq l− 1, respectively. The ratio 234U/238U values were ranged from 1.12 to 2, with an average value of 1.44. Based on the model prediction, 25 years irrigation with the groundwater can inject 94.8 Bq both uranium isotopes in 1 kg topsoil. For investigated groundwater samples, the proposed removal method using K2FeO4 removed 74.28% and 81.04% for 234U and 238U, respectively.

More detail >>

 

Van‐Chung Cao, Thi Ly Nguyen, Thi Thu Hong Pham, Thi The Doan, Han‐Tuong Luc, Nhut‐Huan Phan, Giang T. T. Phan,  Trung H. Duong,  Hoai‐Nam Tran

Journal of Radioanalytical and Nuclear Chemistry

Abstract:

A treatment of dose nonuniformity inside Lo Ren and purple star apples irradiated by 10 MeV electron beam accelerator has been proposed by using medium density berboards (MDF). The dose uniformity ratios (DURs) inside the Lo Ren and purple star apples were estimated as 2.47–2.48 and 2.18–2.22, respectively. To reduce the DURs, the arrangement and the thickness of the MDF boards were determined by Monte Carlo simulations. Measurements of the absorbed doses have been conducted to compare with the simulations. The DURs were reduced to 1.36–1.39 and 1.44–1.46 for the Lo Ren and purple star apples, respectively.

More detail >>

Treatment for removing radium in soil and groundwater

Nguyen Phong Thu Huynh, Van Thang Nguyen, Ngoc Ba Vu, Cong Hao Le, Thi Hong Loan Truong

Applied Radiation and Isotopes 182 (2022) 110127

Abstract:

The results of 226Ra activity concentration measurements in 50 soil and groundwater samples in Ninh Son region, Vietnam were evaluated in the present study. Average activity concentration in the soils was significantly higher than the worldwide average concentration in soils published by UNSCEAR, 2008. 90% of groundwater samples had concentrations of 226Ra that were higher than the USEPA drinking water standard. The results showed that there was a linear correlation between the 226Ra radioactivity in the soils and the concentration of 226Ra in the groundwater samples. The procedure for removal of 226Ra from soil and groundwater samples was built upon the chemistry behavior of radium. 226Ra in contaminated groundwater samples was removed by using MnO2 fiber. The removal efficiency of 226Ra reached ~ 91% for the groundwater samples and ~ 70% for the soil samples. Chemical removal of 226Ra from soils was investigated using a three-step extraction procedure (Easily leachable and exchangeable, Acid-reducible, and Oxidisable-organic). A moderate mobility of 226Ra (22–52%) was noted and mainly found in acid-reducible fractions, which suggests that 226Ra is mainly bound to Fe/Mn oxides and hydroxides. A multiple regression indicates that the 226Ra removal efficiency appears to be significantly dependent on Fe/Mn and organic matter content.

More detail >>

Nguyen Tri Toan Phuc, Kazuki Yoshida, Kazuyuki Ogatta,

Phys.Rev. C100,064604 - Published 6 December 2019

ABSTRACT:

Background: Proton-induced nucleon knockout (p,pN) reactions have been successfully used to study the single-particle nature of stable nuclei in normal kinematics with the distorted-wave impulse approximation (DWIA) framework. Recently, these reactions have been applied to rare-isotope beams at intermediate energies in inverse kinematics to study the quenching of spectroscopic factors.

Purpose: Our goal is to investigate the effects of various corrections and uncertainties within the standard DWIA formalism on the (p, pN) cross sections. The consistency of the extracted reduction factors between DWIA and other methods is also evaluated.
Method: We analyze the ( p, 2 p) and ( p, pn) reaction data measured at the R3 B-LAND setup at GSI for carbon, nitrogen, and oxygen isotopes in the incident energy range of 300–450 MeV/u. Cross sections and reduction factors are calculated by using the DWIA method. The transverse momentum distribution of the 12C(p,2p)11B reaction is also investigated.

Results: We have found that including the nonlocality corrections and the Møller factor affects the cross sections considerably. The proton-neutron asymmetry dependence of reduction factors extracted by the DWIA calculation is very weak and consistent with those given by other reaction methods and ab initio structure calculations.

Conclusions: The results found in this work provide a detailed investigation of the DWIA method for ( p, pN ) reactions at intermediate energies. They also suggest that some higher-order effects, which is essential for an accurate cross-section description at large recoil momentum, is missing in the current DWIA and other reaction models.

DOI: 10.1103/PhysRevC.100.064604

More Articles ...

FaLang translation system by Faboba

Links

 


   logo Truong KHTN 2021  physics          TTHN          VAEA     varans1          nri logo           canti1