FACULTY OF PHYSICS & ENGINEERING PHYSICS

DEPARTMENT OF NUCLEAR PHYSICS - NUCLEAR ENGINEERING - MEDICAL PHYSICS

Abstract :

The first laser spectroscopic determination of the change in the nuclear charge radius for a five-electron system is reported. This is achieved by combining high-accuracy ab initio mass-shift calculations and a high-accuracy measurement of the isotope shift in the 2s22p2P1/22s23s2S1/2 ground state transition in boron atoms. Accuracy is increased by orders of magnitude for the stable isotopes 10,11B and the results are used to extract their difference in the mean-square charge radius r2c11r2c10=0.49(12)fm2. The result is qualitatively explained by a possible cluster structure of the boron nuclei and quantitatively used to benchmark new ab initio nuclear structure calculations using the no-core shell model and Green’s function Monte Carlo approaches. These results are the foundation for a laser spectroscopic determination of the charge radius of the proton-halo candidate 8B.

 

More information >>

FaLang translation system by Faboba

Links

 


   logo Truong KHTN 2021  physics          TTHN          VAEA     varans1          nri logo           canti1