KHOA VẬT LÝ - VẬT LÝ KỸ THUẬT

BỘ MÔN VẬT LÝ HẠT NHÂN - KỸ THUẬT HẠT NHÂN

Researchers at the University of Southampton and the Korea Institute for Advanced Study have recently showed that supersymmetry is anomalous in N=1 superconformal quantum field theories (SCFTs) with an anomalous R symmetry. The anomaly described in their paper, published in Physical Review Letters, was previously observed in holographic SCFTs at strong coupling, yet their work confirms that it is already present in the simplest free STFCs.

More detail >>

Researchers at the Center for Quantum Nanoscience (QNS) within the Institute for Basic Science (IBS) at Ewha Womans University have made a major scientific breakthrough by performing the world's smallest magnetic resonance imaging (MRI). In an international collaboration with colleagues from the U.S., QNS scientists used their new technique to visualize the magnetic field of single atoms.

More detail>>

A team of researchers affiliated with several institutions in Spain and the U.S. has announced that they have discovered a new property of light—self-torque. In their paper published in the journal Science, the group describes how they happened to spot the new property and possible uses for it.

More detail >>

When studying biological cells using optical tweezers, one main issue is the damage caused to the cell by the tool. Giovanni Volpe, University of Gothenburg, has discovered a new type of force that will greatly reduce the amount of light used by optical tweezers—and improve the study of all kinds of cells and particles.

More detail >>

Electronic properties of materials can be directly influenced via light absorption in under a femtosecond (10-15 seconds), which is regarded as the limit of the maximum achievable speed of electronic circuits. In contrast, the magnetic moment of matter has only been able to be influenced up to now by a light and magnetism-linked process and roundabout way by means of magnetic fields, which is why magnetic switching takes that much longer and at least several hundred femtoseconds.

More detail >>

Scientists have created the world’s most powerful superconducting magnet, capable of generating a record magnetic field intensity of 45.5 tesla.

More detail >>

THÔNG BÁO KHÁC...

BẢN TIN CHUNG

BẢN TIN GIÁO VỤ

BẢN TIN KHOA HỌC

Liên kết

 


     physics          TTHN          VAEA     varans1          nri logo          canti1