bm logo2020 vi

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN, ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH

KHOA VẬT LÝ - VẬT LÝ KỸ THUẬT

BỘ MÔN VẬT LÝ HẠT NHÂN - NGÀNH KỸ THUẬT HẠT NHÂN - NGÀNH VẬT LÝ Y KHOA

Enhancing Neutron/Gamma Discrimination in the Low-Energy Region for EJ-276 Plastic Scintillation Detector Using Machine Learning

Vo Hong Hai; Nguyen Minh Dang; Nguyen Tri Toan Phuc; Hoang Thi Kieu Trang; Truong Thi Hong Loan; Phan Le Hoang Sang; Masaharu Nomachi

IEEE Transactions on Nuclear Science

Abstract:

Pulse Shape Discrimination (PSD) techniques, particularly the widely employed charge integration ratio method (Q-ratio), have proven effective in discriminating fast neutrons from gamma rays in organic scintillation detectors. However, the effectiveness of Q-ratio diminishes in the low-energy region (below 150 keVee) due to overlapping signal, leading to a suboptimal Figure of Merit (FOM). In this study, we use machine learning (ML) technique, particularly the one-dimensional Convolutional Neural Network (1D-CNN), to enhance the neutron/gamma discrimination and compares the results with the traditional charge integration ratio in the low-energy region. Our investigation focuses on the EJ-276 plastic scintillator, a commercial product of ELJEN technology known for its good separation of gamma and fast neutron signals based on timing characteristics. Experimental data were acquired using 252Cf and 60Co radioisotope sources. A comprehensive comparative analysis between the traditional Q-ratio method and ML algorithms is conducted for the low energy region. Our main objective is to evaluate and enhance neutron/gamma discrimination capabilities of plastic scintillators in this low-energy region.

More detail >>

FaLang translation system by Faboba

BẢN TIN CHUNG

BẢN TIN GIÁO VỤ

BẢN TIN KHOA HỌC

THÔNG TIN TUYỂN DỤNG

Liên kết

 


  logo Truong KHTN 2021     logo khoaVatly      TTHN        VAEA   varans1      nri logo        canti1