bm logo2020 vi

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN, ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH

KHOA VẬT LÝ - VẬT LÝ KỸ THUẬT

BỘ MÔN VẬT LÝ HẠT NHÂN - NGÀNH KỸ THUẬT HẠT NHÂN - NGÀNH VẬT LÝ Y KHOA

Constraining the α-nucleus potential for α-decay calculation with nuclear rainbow scattering

Nguyen Tri Toan Phuc, Le Hoang Chien, Chau Van Tao

Science & Technology Development Journal, 25(1):1-9

Abstract:

Introduction: The emission of a particles is a powerful probe for the α-cluster structure of heavy nuclei. The α-nucleus potential is a crucial ingredient in the a-decay calculation within the preformed cluster model. One of the most reliable ways to construct this potential is the double folding model, where an effective nucleon-nucleon interaction is folded with the nuclear densities. In the folding model calculation, there are many ambiguities in the choice of the nuclear densities of the daughter nucleus for α-decay. We propose to directly constrain the α-nucleus potential for α- decay and choose the daughter nuclear density using the nuclear rainbow scattering phenomenon.

Methods: The refractive rainbow pattern in the elastic scattering cross section within the optical model can probe deep into the interior region of the α-nucleus potential. We apply this method to investigate the reliability of the nuclear potential used in the α-decay of the 212Po nucleus leading to the 208Pb daughter nucleus by examining the elastic a scattering on 208Pb. In such an approach, we perform the double-folding calculation to construct the α-nucleus potential using several common parametrizations of the daughter nuclear densities. These parametrizations include the mean-field Hartree-Fock-Bogoliubov calculations with the BSk14 and D1S interactions, the independent particle model, and the 2-parameter Fermi distributions. The obtained nuclear potentials are applied to the optical model to calculate the elastic α-208Pb scattering cross sections that are compared with the experimental data. These nuclear potentials are further used in the preformed cluster model to study thea-decay half-life of 212Po.

Results: The nuclear densities from the Hartree-Fock-Bogoliubov calculations are shown to provide the best description for both the nuclear rainbow scattering anda-decay half-life. The results indicate a strong correspondence between the capabilities of the nuclear potential to reproduce the cross section ofa scattering and the α-decay half-life. The extracteda preformation factors from the semiclassical preformed cluster model with folding potentials are in good agreement with those from other studies.

Conclusion: The nuclear rainbow scattering phenomenon can be used to provide reliable a-nucleus potential
for α-decay studies within the preformed cluster model. The nuclear densities from the mean-field Hartree-Fock-Bogoliubov method with the BSk14 and D1S interactions are the appropriate choices for the DFM calculation used in the α-decay study.

More detail >>

 

FaLang translation system by Faboba

BẢN TIN CHUNG

BẢN TIN GIÁO VỤ

BẢN TIN KHOA HỌC

THÔNG TIN TUYỂN DỤNG

Liên kết

 


  logo Truong KHTN 2021   physics          TTHN          VAEA     varans1          nri logo          canti1