bm logo2020 vi

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN, ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH

KHOA VẬT LÝ - VẬT LÝ KỸ THUẬT

BỘ MÔN VẬT LÝ HẠT NHÂN - NGÀNH KỸ THUẬT HẠT NHÂN - NGÀNH VẬT LÝ Y KHOA

Recent advances in the observation of high-energy radiations, including X-rays and gamma-rays, have unveiled many high-energy aspects of the universe. To achieve a complete understanding of these radiations, however, researchers need to find out more about the high-energy particles (i.e. cosmic rays) that produce them. In fact, non-thermal radiations characterized by the power-law spectrum are all backed by the acceleration and propagation of these rays.

More detail >>

Researchers at Tokyo Institute of Technology have found a simple, yet highly versatile way to generate "chaotic signals" with various features. The technique consists of interconnecting three ring oscillators, effectively making them compete against each other, while controlling their respective strengths and their linkages. The resulting device is rather small and efficient, thus suitable for emerging applications such as realizing wireless networks of sensors.

More information >>

Dark matter is an unknown type of matter present in the universe that could be of particle origin. One of the most complete theoretical frameworks that includes a dark matter candidate is supersymmetry. Many supersymmetric models predict the existence of a new stable, invisible particle called the lightest supersymmetric particle (LSP), which has the right properties to be a dark matter particle. 

More detail >>

Could the Higgs boson still surprise us? Since its discovery in 2012, the ATLAS and CMS collaborations at CERN have been actively studying the properties of this latest and most mysterious addition to the Standard Model of particle physics. 

More detail >>

Article from ATLAS

Among the most intriguing particles studied by the ATLAS Experiment is the top quark. As the heaviest known fundamental particle, it plays a unique role in the Standard Model of particle physics, and perhaps in physics beyond the Standard Model.

More detail >>

Article from ATLAS

When studying biological cells using optical tweezers, one main issue is the damage caused to the cell by the tool. Giovanni Volpe, University of Gothenburg, has discovered a new type of force that will greatly reduce the amount of light used by optical tweezers—and improve the study of all kinds of cells and particles.

More detail >>

THÔNG BÁO KHÁC...

FaLang translation system by Faboba

BẢN TIN CHUNG

BẢN TIN GIÁO VỤ

BẢN TIN KHOA HỌC

THÔNG TIN TUYỂN DỤNG

Liên kết

 


  logo Truong KHTN 2021   physics          TTHN          VAEA     varans1          nri logo          canti1